Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Med Res ; 29(1): 253, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659000

RESUMO

The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.


Assuntos
Produtos Biológicos , Insuficiência Cardíaca , Ferro , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Ferro/metabolismo , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Antioxidantes/uso terapêutico
2.
Reprod Sci ; 30(4): 1033-1048, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35941510

RESUMO

The aim of this study is to evaluate the efficacy and safety of coenzyme Q10 supplementation in the treatment of polycystic ovary syndrome (PCOS). We first searched PubMed, Wanfang Data, CNKI, Embase, ClinicalTrial.gov, and other databases. The retrieval time from the establishment of the database to January 2021. We collected relevant randomized controlled trials (RCTs) about coenzyme Q10 in the treatment of PCOS. Risk of bias assessment and meta-analysis of RCTs were performed using RevMan 5.0 software. This systematic review and meta-analysis include a total of 9 RCTs involving 1021 patients. The results show that the addition of coenzyme Q10 may improve insulin resistance (HOMA-IR (WMD - 0.67 [- 0.87, - 0.48], P < 0.00001); fasting insulin (WMD - 1.75 [- 2.65, - 0.84], P = 0.0002); fasting plasma glucose (WMD - 5.20 [- 8.86, - 1.54], P = 0.005)), improve sex hormone levels (FSH (SMD - 0.45 [0.11, 0.78], P = 0.009); testosterone (SMD - 0.28 [- 0.49, - 0.06], P = 0.01)), and improve blood lipids (triglycerides (SMD - 0.49 [- 0.89, - 0.09], P = 0.02); total cholesterol (SMD - 0.35 [- 0.56, - 0.14], P = 0.001); LDL-C (SMD - 0.22 [- 0.43, - 0.01], P = 0.04); HDL-C (SMD 0.22 [0.01, 0.43], P = 0.04)). Only one RCT reported adverse events, and they found that patients had no adverse effects or symptoms following supplementation. Based on the current evidence, it could be considered that the addition of CoQ10 is a safe therapy to improve PCOS by improving insulin resistance (reduce HOMA-IR, FINS, FPG), increasing sex hormone levels (increase FSH, reduce testosterone), and improving blood lipids (reduce TG, TC, LDL-C, and increased HDL-C).


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Suplementos Nutricionais/efeitos adversos , LDL-Colesterol , Lipídeos , Hormônios Esteroides Gonadais , Hormônio Foliculoestimulante , Testosterona/uso terapêutico
3.
Front Immunol ; 13: 949746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159792

RESUMO

Background: Dietary polyphenol treatment of non-alcoholic fatty liver disease (NAFLD) is a novel direction, and the existing clinical studies have little effective evidence for its therapeutic effect, and some studies have inconsistent results. The effectiveness of dietary polyphenols in the treatment of NAFLD is still controversial. The aim of this study was to evaluate the therapeutic efficacy of oral dietary polyphenols in patients with NAFLD. Methods: The literature (both Chinese and English) published before 30 April 2022 in PubMed, Cochrane, Medline, CNKI, and other databases on the treatment of NAFLD with dietary polyphenols was searched. Manual screening, quality assessment, and data extraction of search results were conducted strictly according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the meta-analysis. Results: The RCTs included in this study involved dietary supplementation with eight polyphenols (curcumin, resveratrol, naringenin, anthocyanin, hesperidin, catechin, silymarin, and genistein) and 2,173 participants. This systematic review and meta-analysis found that 1) curcumin may decrease body mass index (BMI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Triglycerides (TG) total cholesterol (TC), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) compared to placebo; and curcumin does not increase the occurrence of adverse events. 2) Although the meta-analysis results of all randomized controlled trials (RCTs) did not reveal significant positive changes, individual RCTs showed meaningful results. 3) Naringenin significantly decreased the percentage of NAFLD grade, TG, TC, and low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) but had no significant effect on AST and ALT, and it is a safe supplementation. 4) Only one team presents a protocol about anthocyanin (from Cornus mas L. fruit extract) in the treatment of NAFLD. 5) Hesperidin may decrease BMI, AST, ALT, TG, TC, HOMA-IR, and so on. 6) Catechin may decrease BMI, HOMA-IR, and TG level, and it was well tolerated by the patients. 7) Silymarin was effective in improving ALT and AST and reducing hepatic fat accumulation and liver stiffness in NAFLD patients. Conclusion: Based on current evidence, curcumin can reduce BMI, TG, TC, liver enzymes, and insulin resistance; catechin can reduce BMI, insulin resistance, and TG effectively; silymarin can reduce liver enzymes. For resveratrol, naringenin, anthocyanin, hesperidin, and catechin, more RCTs are needed to further evaluate their efficacy and safety.


Assuntos
Catequina , Curcumina , Hesperidina , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Silimarina , Alanina Transaminase , Antocianinas/uso terapêutico , Aspartato Aminotransferases , HDL-Colesterol , LDL-Colesterol , Curcumina/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Genisteína/uso terapêutico , Hesperidina/uso terapêutico , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Polifenóis/efeitos adversos , Resveratrol/uso terapêutico , Silimarina/uso terapêutico , Triglicerídeos
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981705

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Proteínas de Ciclo Celular/genética , Colesterol/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina , Quinase 1 Polo-Like
5.
Pain Res Manag ; 2022: 2690291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069954

RESUMO

In this prospective cohort study, we aimed to determine the surgical and adjacent segment changes in paraspinal muscles and facet joints in patients with lumbar spinal stenosis after minimally invasive posterior lumbar interbody fusion (PLIF) using the cortical bone trajectory (CBT) technique. We enrolled 30 consecutive patients who underwent the single-level CBT technique between October 2017 and October 2018. We evaluated preoperative and 1-month, 3-month, 6-month, and 1-year postoperative clinical data including Visual Analogue Scale (VAS) scores and Oswestry Disability Index (ODI). Magnetic resonance imaging (MRI) was performed a year after surgery. The erector spinae (ES) muscle area, volume, and fat infiltration (FI) on the surgical and adjacent segments were evaluated using the thresholding method, and the degree of adjacent facet joint degeneration was calculated using the Weishaupt scale. FI rate was graded using the Kjaer method. All patients underwent a 12-month follow-up. The VAS and ODI scores significantly improved after surgery in all patients. No patient showed degeneration of the adjacent facet joints (P > 0.05) during the 1-year follow-up postoperation. There was no significant difference in ES muscle volume, area, and FI on the surgical and adjacent segments (P > 0.05). The FI rate of the upper ES muscles increased postoperatively (P < 0.05); however, there were no significant changes in FI rate of the lower ES muscles. Patients with lumbar spinal stenosis could obtain satisfactory short-term clinical outcomes via minimally invasive PLIF using the CBT technique. Moreover, this technique may reduce the impact on the paravertebral muscles, especially the ES muscle, and the adjacent facet joints.


Assuntos
Fusão Vertebral , Articulação Zigapofisária , Osso Cortical/cirurgia , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Músculos Paraespinais/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Resultado do Tratamento , Articulação Zigapofisária/diagnóstico por imagem , Articulação Zigapofisária/cirurgia
6.
Front Pharmacol ; 12: 690371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950023

RESUMO

Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-ß-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32318556

RESUMO

The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h-1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.

8.
FASEB J ; 32(10): 5250-5257, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29913559

RESUMO

During its life cycle, Zika virus (ZIKV), an arthropod-borne flavivirus that is associated with Guillain-Barré syndrome and causes microencephaly in fetuses and newborn children, encodes a critical and indispensable helicase domain that has 5'-triphosphatase activity and performs ATP hydrolysis to generate energy and thus, sustains unwinding of double-stranded RNA during ZIKV genome replication. Of these processes, ATP hydrolysis represents the most basic event; however, its dynamic mechanisms remain largely unknown, impeding the further understanding of the function of ZIKV helicase and the ongoing anti-ZIKV drug design. In this work, we determined the crystal structure of ZIKV helicase in complex with ADP-AlF3-Mn2+ and ADP-Mn2+ separately. The structural analysis indicates that these structures represent the intermediate state and posthydrolysis state, respectively, of the ATP hydrolysis process of ZIKV helicase. These findings, together with our earlier work, which identified the prehydrolysis state of ZIKV helicase, lead to a proposal of the ATP hydrolysis cycle for ZIKV helicase. On this basis, we used site-directed mutagenesis combined with an enzymatic study to identify successfully residues that are critical for the ATPase activity of ZIKV helicase; this will provide new ideas to understand the function for the key enzyme of ZIKV.-Yang, X., Chen, C., Tian, H., Chi, H., Mu, Z., Zhang, T., Yang, K., Zhao, Q., Liu, X., Wang, Z., Ji, X., Yang, H. Mechanism of ATP hydrolysis by the Zika virus helicase.


Assuntos
Trifosfato de Adenosina/química , RNA Helicases/química , Proteínas Virais/química , Zika virus/enzimologia , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Hidrólise , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Zika virus/genética
9.
Nat Commun ; 8: 15621, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561074

RESUMO

The mechanism underlying bone impairment in patients with diabetes mellitus, a metabolic disorder characterized by chronic hyperglycaemia and dysregulation in metabolism, is unclear. Here we show the difference in the metabolomics of bone marrow stromal cells (BMSCs) derived from hyperglycaemic (type 2 diabetes mellitus, T2D) and normoglycaemic mice. One hundred and forty-two metabolites are substantially regulated in BMSCs from T2D mice, with the tricarboxylic acid (TCA) cycle being one of the primary metabolic pathways impaired by hyperglycaemia. Importantly, succinate, an intermediate metabolite in the TCA cycle, is increased by 24-fold in BMSCs from T2D mice. Succinate functions as an extracellular ligand through binding to its specific receptor on osteoclastic lineage cells and stimulates osteoclastogenesis in vitro and in vivo. Strategies targeting the receptor activation inhibit osteoclastogenesis. This study reveals a metabolite-mediated mechanism of osteoclastogenesis modulation that contributes to bone dysregulation in metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Hiperglicemia/patologia , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/citologia , Osteogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
10.
Oncotarget ; 8(9): 14830-14834, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28122329

RESUMO

An outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly potentially associated with ZIKV infection has already caused a public health emergency of international concern. Currently, there are no clinically effective vaccines or antiviral drugs available to treat ZIKV infection. The methyltransferase domain (MTase) of ZIKV nonstructural protein 5 (NS5) can sequentially methylate guanine N-7 and ribose 2'-O to form m7NGpppA2'Om cap structure in the new RNA transcripts. This methylation step is crucial for ZIKV replication cycle and evading the host immune system, making it a target for drug design. Here, we present the 1.76 Å crystal structure of ZIKV MTase in complex with the byproduct SAH, providing insight into the elegant methylation process, which will benefit the following antiviral drug development.


Assuntos
Metiltransferases/química , Conformação Proteica , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas não Estruturais Virais/metabolismo
11.
Am J Cancer Res ; 5(12): 3600-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26885449

RESUMO

The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metformin was also confirmed in HSG cells. In association with the reduction of MYC onco-protein, metformin significantly restored p53 tumor suppressor gene expression. The distinctive effects of metformin and PP242 on MYC reduction and P53 restoration suggested that metformin inhibited cell growth through a different pathway from PP242 in salivary carcinoma cells. Furthermore, the anti-tumor efficacy of metformin was confirmed in vivo as indicated by the increases of tumor necrosis and reduced proliferation in xenograft tumors from metformin treated group. For the first time, the inhibitory effect of metformin on human salivary gland tumor cells was documented. Moreover, metformin inhibitory effects were enhanced by mTOR inhibitor suggesting that metformin and mTOR inhibitor utilize distinctive signaling pathways to suppress salivary tumor growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA